Applied Functional Analysis: Homework 3*

Mounir HAJLI

October 17, 2018

Exercise 1

Let (X, d) be a metric space.

- 1. Let (x_k) be a sequence of points in X converging to a limit $a \in X$. Prove that $K \cup \{x_k | k \in \mathbb{N}\}$ is compact.
- 2. Let *Y* be a metric space and $f: X \to Y$ an application. We suppose that the restriction of *f* to any compact subset of *X* is continuous. Prove that *f* is continuous.

Exercise 2

Let *X* consist of two points *a* and *b*, put $\mu(\{a\}) = \mu(\{b\}) = \frac{1}{2}$

Exercise 3

Let *E* be a normed space, *A*, *B* subsets of *E*. We set $A + B = \{x + y | x \in A, y \in B\}$

- 1. Suppose A and B are compacts. Show that A + B is compact.
- 2. Suppose that A is compact and Fclosed. Prove that A + B is closed in E.

^{*}Due 11 October

Exercise 4

Let K be a compact non empty of metric space (X, d) and U an open subset of X containing K. Show that there exists r > 0 such that for any $x \in X$, we have

$$d(x,K) < r \implies x \in U$$
.

(Hint): consider the application $x \rightarrow d(x, X \setminus U)$ defined on K

Exercise 5

Let p, q > 1 with

$$\frac{1}{p} + \frac{1}{q} = 1.$$

1. a) Show the following: For any a, b > 0, we have

$$a^{1/p}b^{1/q} \le \frac{a}{p} + \frac{b}{q} \tag{0.1}$$

$$\left(\frac{a+b}{2}\right)^p \le \frac{1}{2}(a^p + b^p). \tag{0.2}$$

- 2. Consider the space $l^p(\mathbb{N})$ (See the notes).
 - a) Show that $l^p(\mathbb{N})$ is a vector space.
 - b) Prove that

$$\sum_{n=1}^{\infty} |x_n| |y_n| \le ||x||_p ||y||_q \quad \forall x = (x_n) \in l^p(\mathbb{N}) \ \forall y = (y_n) \in l^q(\mathbb{N}).$$

c) Prove that the following map

$$l^p(\mathbb{N}) \to l^1(\mathbb{N}), (x_n)_n \mapsto (x_n y_n)_n$$

where $(y_n)_n \in l^q(\mathbb{N})$, is well defined and continuous.

3. Let $x, y \in l^p(\mathbb{N})$, Prove that

$$\left(\sum_{n\in\mathbb{N}} |x_n + y_n|^p\right)^{\frac{1}{p}} \le \left(\sum_{n\in\mathbb{N}} |x_n|^p\right)^{\frac{1}{p}} + \left(\sum_n |y_n|^p\right)^{\frac{1}{p}}$$

- 4. Show that $\|\cdot\|_p$ is a norm on $l^p(\mathbb{N})$.
- 5. Prove that $(l^p(\mathbb{N}), \|\cdot\|_p)$ is Banach. Hint: Take a Cauchy sequence $(x^{(k)})_{k\in\mathbb{N}}$, and show that the coordinates form a Cauchy sequence.

We have $|x_n^{(k)}-x_n^{(l)}|\leq \|x^{(k)}-x^{(l)}\|_p$ for any $n,k,l\in\mathbb{N}$, why? Then for any n, $(x_n^{(k)})_k$ converges to a limit z_n . Put $z=(z_n)_{n\in\mathbb{N}}$.

$$\|x^{(l)} - z\|_{p} \le \|x^{(l)} - x^{(k)}\|_{p} + \|x^{(k)} - z\|_{p}$$
(0.3)

Now, let $\epsilon>0, \exists N$ so that $\|x^{(l)}-x^{(k)}\|_p<\epsilon$ for $k,l\geq N$. Fix $k\geq N$, then there exists M>0 such that

$$\sum_{n=M}^{\infty} |x_n^{(k)} - z_n|^p < \epsilon^p.(Why?)$$

This give $\sum_{n=N}^{\infty}|x_n^{(l)}-z_n|^p\leq 2\epsilon, \forall l\geq N$ (use the triangle inequality). Consider the sum $\sum_{n=0}^{N-1}|x_n^{(l)}-z_n|^p$, we can find $l\gg 1$ such that this finite sum is $\leq \epsilon$. and then $\|x^{(l)}-z\|_p\leq 2^{\frac{1}{p}}\epsilon$. Use (0.3) to conclude.

6. We set $l_0(\mathbb{N}) = \{x = (x_n)_{n \in \mathbb{N}} | \exists N \in \mathbb{N}, x_n = 0 \forall n \ge N \}$. Show that $l_0(\mathbb{N})$ is a vector space of which is dense in $l^p(\mathbb{N})$.

Exercise 6

Let *E* be a Banach space and *F* a closed subspace. For each coset x + F of *F*, define $|x + F| = \inf |x + y|$ for $y \in F$. Show this defines a norm on the quotient space E/F, and the natural map $E \to E/F$ is continuous.